

mercurio

MERCURIO TECHNICAL GUIDE

CE

_	INDEX	pag. 2
1	WARNING	pag. 3
2	GENERAL INFORMATION	pag. 4
-	2.1 Block diagram	pag. 4
3		pag. 5
4		pag. 6
	4.1 Mode ONOFF	pag. 7
	4.2 Mode Dual Speed	pag. 8
-	4.3 Mode Variable Speed	pag. 9
5	INPU I	pag. 10
	5.1 Direct current	pag. 10
	5.2 Single-phase alternating current ACT	pag. 11
	5.2.1 Voltage limit	pag. 11
	5.2.2 FORM factor (D.P.F.)	pag. 12
	5.2.3 Frequency limit	pag. 12
	5.3 Inree-phase alternating current AC3	pag. 13
	5.3.1 Voltage limit	pag. 13
	5.3.2 FOITH TACLOF (D.P.F.)	pag. 14
	5.3.5 Frequency IIIIII	pag. 14
	5.5 Other limitations	pag. 15
	5.5 0 Output Power	pag. 10
	5.5.2 Output Current	pag. 10 nag. 16
	5.5.3 Temperature	pag. 10 nag. 17
6	BATTERY	pag. 17
7		pag. 10
8	EFFICIENCY	pag. 20
9	MECHANICAL FIXING AND VENTILATION	pag. 21
10	ELECTRICAL CONNECTION	pag. 22
	10.1 Power connection	pag. 23
	10.1.1 Wire sizing	pag. 24
	10.2 Three phases (AC3)	pag. 25
	10.3 Three phases (AC3+PV)	pag. 26
	10.4 Single phase (AC1)	pag. 27
	10.5 Single phase (AC1+PV)	pag. 28
	10.6 Signal connection	pag. 29
	10.6.1 Relay	pag. 30
	10.6.2 LED	pag. 31
	10.6.3 Analogue output	pag. 33
	10.6.4 Serial Interface RS232	pag. 33
	10.6.5 Battery temperature sensor	pag. 33
		pag. 34
	10.6.6.2 EDO	pay. 34
	10.6.7 Dowor Off	pag. 34
11		pag. 35
12	SOFTWARE	pag. 30 pag. 36
14	12.1 Set password (for advanced access)	pag. 30 pag. 37
	12.2 Interface SW	pag. 38
	12.3 History and failure conuter	pag. 40
	12.4 Advance control parameter	pag. 41
	12.5 Parameter description	pag. 42
	12.5.1 Imax charge	pag. 42
	12.5.2 Vcycle	pag. 42
	12.5.3 Vstandby	pag. 42
	12.5.4 Size	pag. 43
	12.5.5 Function mode	pag. 43
	12.5.6 Input mode	pag. 43
	12.5.7 VbattTH1	pag. 44
	12.5.8 IbattTH1	pag. 44
	12.5.9 IoutTH2	pag. 45
	12.5.10 Vmax & Vmin	pag. 45

12.	5.11 Tacc (Delay3)	pag. 45
12.	5.12 Relay Mode	pag. 45
12.	5.13 Max start time (delay5)	pag. 46
12.	5.14 Freq start	pag. 46
12.	5.15 Freq stop	pag. 46
12.	5.16 D.P.F.	pag. 47
12.	5.17 Max Slope	pag. 47
12.6	Detailed curve - output power	pag. 49
OPTIO	NAL	pag. 51
13.1	Interface USB	pag. 51
13.2	Interface RS485	pag. 51
13.3	Interface ModBus	pag. 51
13.4	Interface Ethernet	pag. 51
13.5	Display	pag. 52
ENCLC	SURE	pag. 53
14.1	Mercurio 5k	pag. 53
14.2	Mercurio 10k	pag. 57
14.3	Mercurio 15k	pag. 61
CERTI	FICATION	pag. 64
ORDIN	ARY SERVICE	pag. 65
16.1	Disposal informations	pag. 65
APPEN	DIX A	pag. 66

This document describes the technical characteristics and functioning of the battery charger Mercurio.

1 WARNING

13

14

15 16

> Before any operation to the equipment, read this manual carefully, follow instructions contained therein. Any change and/or tampering of the equipment and any misuse from not following these instructions will affect the warranty.

> In any case Mecc Alte shall not be responsible for incidental or consequential damages, due to improper use not described in this user's manual.

Mecc Alte does not assume any liability for repairs or alterations made by others.

Mecc Alte does not assume any liability for injuries to people or things caused by bad functioning of this equipment.

During the warranty period the service and the repairs must be by Mecc Alte technical assistance centre. Failure to comply will affect the warranty

Store this manual with the product for future consultations.

Mecc Alte can modify at any time without any notice the contents of this manual and/or the technical features of the products.

SAFETY

Because of the presence of high energy battery, that could be dangerous also with general switch in OFF position and/or with disconnected cable, any service must be made only by specialized and skilled staff. Avoid the access of water or liquids and/or other foreign objects in general, into the Mercurio.

To avoid overheat fault not expose to the sun or heat source.

BATTERY

The battery substitution has to be made by specialized staff only. Don't try to open the battery, the materials contained in are very dangerous for eyes and skin.

2 GENERAL INFORMATION

Mercurio is a battery charger intended for the world of telecommunications, designed with the most advanced electronic technologies.

A feature which makes it very versatile is the Mercurio ability to accept a multitude of input signals, to provide a complete cycle of battery charge and during the cycle provides power to the loads.

Mercurio has been designed to work in a fully automated system without the need of external operators.

It was designed to handle engines (prime movers) with different modes of operation (OnOff, Dual speed and Full Variable).

A particular feature that greatly increases the field of application is the possibility to insert a power curve of your choice.

Mercurio is in compliance with the requirements for electromagnetic compatibility and safety requirements of the current European legislation that regulates the application of the CE mark.

2.1 Block diagram

Figure 1: Block diagram of Mercurio.

AC/DC

When the input is in the right range convert the AC input voltage in DC voltage with bridge rectifier.

DC/DC Switching

Converter is a switching step down DC/DC with high efficiency.

Real time DSP-Control

Using a Digital Signal Processor (DSP) controls all the functionality of the Mercurio regarding the power circuit command and control, the interface and the communication.

The high computing speed of the DSP (up to 40 million operation/second) allows it to manage the variation of the external parameter (input, load, etc...) in real time with a high dynamic stability and efficiency of the conversion.

Interface EXT

The interface that takes care of the complete engine management system with free contacts, and provides operating information through the signalling LEDs and RS232

- #3 relays
- 1 isolated analogue output
- RS232
- #2 LEDs
- Battery Temperature sensing

3 CYCLE OF CHARGE

At the time it was implemented a "two stage" charge cycle (constant current, constant voltage and maintenance), with the working parameters set entirely within specific range.

In the Figure 2 shows an example of the charge cycle performed. It is divided into three phases:

- 1. Constant Current at the current set.
- 2. Constant Voltage at Vcycle voltage.
- 3. Maintenance charge at Vstandby voltage.

The maintenance phase will only be available for photovoltaic plants connected, otherwise the charge will be completed after the constant voltage phase.

Figure 2: Charging cycle of the battery.

Charging will start when the batteries are discharged, with voltage level pre-set.

For lead-acid batteries the recommended values for charging voltage, with a temperature of 20-25°C, are the following:

- cyclic use: 2.40 2.45 V/cell (Vcycle/cell)
- stand-by use: 2.25 2.30 V/cell (Vstandby/cell)

4 FUNCTION MODE

The first power on and after a fault, the battery charger is in a standby state. At this point if the conditions are stable and valid for thirty seconds switch to an operating state.

State	Descritpion
STANDBY	No output
OPERATIVE	Discharge – Charge Icost – Charge Vcost - Maintenance

Necessary condition for the start of Mercurio:

- Batteries connected and correct voltage range
 - o Vbatt > $N^{(1)*}9V$
 - o Vbatt < N*16V
- Rectified voltage appropriate
 - o Vhp > 15V
 - o Vhp < 160V
- Temperature in the range of operation
 - o Tcase < 75°C
 - o Theatsink < 70°C

Figure 3: Main FSM.

The battery charge Mercurio has the ability to work with three different control modes of generator, are:

- ONOFF
- Dual Speed
- Variable Speed

4.1 Mode ONOFF

This mode of operation is typical for engines which do not have the possibility of the speed controller.

In the state diagram in Figure 4 we describe in the ONOFF mode.

This mode is the simplest running for the Mercurio, when the battery voltage falls below the set value, the system starts the engine and performs a full charge cycle, upon its completion it will shut down the engine.

To prevent mistake state transitions are necessary to verify the conditions for a sufficient period of time.

Figure 4: Mode ONOFF.

4.2 Mode Dual Speed

This mode of operation is typical for engines that have the ability to control the speed of two-speed.

This mode is expected that over the driving switch on (and switch off) of the engine, there exists the possibility of controlling two-speed.

Moreover the system has a hysteresis (of current and voltage), that provides stability to the system.

The threshold current is a parameter that must be chosen very carefully, and will be a function of the minimum load and the power available at the two speeds.

Figure 5: Mode Dual Speed.

4.3 Mode Variable Speed

This mode of operation is typical for engines with facility for variable speed control. It allows the diesel engine to save fuel, modulating the output power as a function of the power required to charge the batteries and power to the load.

This change in power demand will be done via an analogue signal, -10V and 10V, that respectively indicate minimum and maximum power.

To make the system stable every variation of charging current will be delayed, so as to allow the engine to adapt to the new reference.

In all stages of recharging the batteries, the system will create a voltage reference that does not waste power.

Figure 6: Mode Variable Speed.

5 INPUT

The battery charge Mercurio is capable of working with different input voltages.

- Direct current DC
- Alternating current Single-phase AC1
- Alternating current Three-phase AC3
- Photovoltaic input (AC1DC or AC3DC)

Through the software it will be possible to select the type of input, and when the system works in single phase and is able to recognize if DC or AC1.

For inputs in AC is a protection able to limit the maximum input current that operates on the value of the rectified voltage and the form factor of the input current.

This type of protection is necessary in order not to exceed the maximum current value effectively absorbed.

Care must be taken in evaluating the form factor of the input current that if it does not reflect the real working conditions it can lead to the failure of the charger. For this purpose it is essential to independently measure the (PF) power factor and adjust the software settings accordingly (by the parameter DPF – see page 16 or 19).

5.1 Direct current

DC voltage supply of the charger is capable of delivering the power described in the following graph Figure 7. The limitation is due to the limitation of the input current (50Arms).

The Vhp voltage in practice represents the input voltage (Vhp≈Vin), the voltage can be supplied independently between two of the three terminals available.

In this mode is only available ONOFF mode.

VHP ≈ Vin [V]	Mercurio Power [W]		
	5k	10k	15k
50	2.500	5.000	7.500
55	2.750	5.500	8.250
60	3.000	6.000	9.000
65	3.250	6.500	9.750
70	3.500	7.000	10.500
75	3.750	7.500	11.250
80	4.000	8.000	12.000
85	4.250	8.500	12.750
90	4.500	9.000	13.500
95	4.750	9.500	14.250
100	5.000	10.000	15.000
105	5.000	10.000	15.000
110	5.000	10.000	15.000
115	5.000	10.000	15.000
120	5.000	10.000	15.000
125	5.000	10.000	15.000
130	5.000	10.000	15.000
135	5.000	10.000	15.000
140	5.000	10.000	15.000
145	5.000	10.000	15.000
150	5.000	10.000	15.000
155	5.000	10.000	15.000
160	5.000	10.000	15.000
165	5.000	10.000	15.000
170	5.000	10.000	15.000

Table 1: Limit of power as function Vhp (DC).

Figure 7: Maximum power versus VHP (voltage input).

5.2 Single-phase alternating current AC1

5.2.1 Voltage limit

Limitation due to the input voltage.

	Vff – Vfn [V]	Vhp [V]	r [W]			
	Alternate input	Rectfier input voltage				
			5k	10k	15k	
	30	42	1.500	3.000	4.500	
	35	49	1.750	3.500	5.250	
	40	57	2.000	4.000	6.000	
	45	64	2.250	4.500	6.750	
De	50	71	2.500	5.000	7.500	
erat	55	78	2.750	5.500	8.250	
tion	60	85	3.000	6.000	9.000	
i ap	65	92	3.250	6.500	9.750	
opli	70	99	3.500	7.000	10.500	
es	75	106	3.750	7.500	11.250	
	80	113	4.000	8.000	12.000	
	85	120	4.250	8.500	12.750	
	90	127	4.500	9.000	13.500	
	95	134	4.750	9.500	14.250	
	100	141	5.000	10.000	15.000	
	105	148	5.000	10.000	15.000	
	110	156	5.000	10.000	15.000	
Р К	115	163	5.000	10.000	15.000	
	120	170	5.000	10.000	15.000	
	125	177	5.000	10.000	15.000	
	130	184	5.000	10.000	15.000	

Table 2: Limit of power as function Vhp (AC1).

The Table 2 valid for DPF (pure sine wave input) values obtained with maximum input current of 50Arms.

Figure 8: Maximum power available as a function of Vhp(AC1).

5.2.2 Form factor (D.P.F.)

The value of the impedance of the generator conditions the effective current input and therefore the power supplied by Mercurio.

The voltage can be provided between two of the three input terminals so indifferent.

Not knowing the impedance of the alternator we have included a parameter that allows you to make an adjustment, not to exceed 35Arms Mercurio.

The DPF game is this parameter, which will act as a percentage of the voltage limitation (Table 2).

5.2.3 Frequency limit

Mercurio can be supplied with single-phase AC 120V maximum value to avoid exceeding the maximum rectified voltage, and high frequency (100Hz to 400Hz) to prevent excessive ripple on the same rectified.

Frequency [Hz]	Maximun Out Power [W]			
	5k	10k	15k	
20	0	0	0	
25	150	300	450	
30	816	1.632	2.448	
40	1.650	3.300	4.950	
50	2.150	4.300	6.450	
75	2.816	5.632	8.448	
100	3.150	6.300	9.450	
200	3.650	7.300	10.950	
300	3.816	7.632	11.448	
400	3.900	7.800	11.700	

Table 2: Derating⁽²⁾ frequency AC1.

NOTE⁽²⁾: If fixed speed 50Hz input as an example, the AC1 single phase input will limit the output of the Mercurio system!

5.3 Three-phase alternating current AC3

5.3.1 Voltage limit

Limitation due to the input voltage.

	Vff [Vrms]	Vhp [V]	Pphase [W]	Ptot [W]	Pphase [W]	Ptot [W]	Pphase [W]	Ptot [W]
	Alternate input voltage	Rectifier input voltage	5k	2	1()k	15	šk
Deration applies	30	42	1.500	4.500	3.000	9.000	4.500	13.500
	40	57	1.667	5.000	3.334	10.000	5.000	15.000
	50	71	1.667	5.000	3.334	10.000	5.000	15.000
	60	64	1.667	5.000	3.334	10.000	5.000	15.000
	70	78	1.667	5.000	3.334	10.000	5.000	15.000
ę	80	92	1.667	5.000	3.334	10.000	5.000	15.000
	90	85	1.667	5.000	3.334	10.000	5.000	15.000
	100	99	1.667	5.000	3.334	10.000	5.000	15.000
	110	113	1.667	5.000	3.334	10.000	5.000	15.000
	120	106	1.667	5.000	3.334	10.000	5.000	15.000

Table 4: Limit of power AC3.

The Table 4 valid for size 5k and DPF (pure sine wave input) values obtained with maximum input current of 50Arms.

Figure 9: Maximum power available as a function of Vhp(AC3).

The value of the impedance of the generator conditions the effective current input and therefore the power supplied by Mercurio.

Not knowing the impedance of the alternator we have included a parameter that allows you to make an adjustment, not to exceed 50Arms Mercurio.

The DPF game is this parameter, which will act as a percentage of the voltage limitation (Table 4).

5.3.3 Frequency limit

The charger is capable of delivering the full power from ~33Hz upwards.

	Frequency [Hz]		Power [W]		
		5k	10k	15k	
	10	0	0	0	
	12	1.050	2.100	3.150	
	14	1.942	3.884	5.826	
De	16	2.612	5.224	7.836	
erat	18	3.133	6.266	9.399	
tior	20	3.550	7.100	10.650	
1 ap	22	3.890	7.780	11.670	
opli	24	4.175	8.350	12.525	
ies	26	4.415	8.830	13.245	
	28	4.621	9.242	13.863	
	30	4.800	9.600	14.400	
	32	4.956	9.912	14.868	
0	34	5.000	10.000	15.000	
¥	36	5.000	10.000	15.000	

Table 5: Frequency derating AC3.

NOTE⁽²⁾: If fixed speed 50Hz input as an example, the AC1 single phase input will limit the output of the Mercurio system!

5.4 Photovoltaic input

Mercurio allows you to charge the batteries through a PV input, more precisely in the maintenance phase. This mode is activated when modes are selected AC1DC and AC3DC.

After the constant voltage phase, selecting this mode, the Mercurio enters the maintenance phase (RL3 close).

RL3	OPEN	CLOSE
	Discharge Icost Vcost	Maintenance (if AC1DC or AC3DC selected)

Not having dedicated inputs for the photovoltaic mode, you must properly configure the installation (see figure below). That is with a switch that allows you to select the desired input AC or PV, commanded by Relay3 Mercurio.

During the maintenance phase of the Mercurio will search MPPT, accordance with the limits of battery and input current (relative to those in DC 5.1).

The open circuit voltage photovoltaic input must not exceed the limit of the maximum input voltage of 170VDC.

5.5 Other limitations

In this section you will learn all the other limitations that make the machine.

5.5.1 Output Power

The Mercurio battery charger has a power derating, which does not allow it to exceed the maximum rated power. eg for Mercurio 5k the charger will reduce its power output so as not to exceed 5000W.

Mercurio	Max Power Out Allowed
5k	5.000 W
10k	10.000 W
15k	15.000 W

5.5.2 Output Current

The Mercurio battery charger has a current limit, which does not allow it to exceed the maximum rated current. eg for Mercurio 5k the charger will reduce its power output so as not to exceed 100A (load & battery).

Mercurio	Max Corrent Allowed [A]
5k	100
10k	200
15k	300

5.5.3 Temperature

The charger will derate according to over temperature. However, if the temperature becomes too high then it will stop charging.

The system detects three temperatures the battery, inside the Mercurio enclosure and heatsink, but only on the last two for power output derating. The battery temperature is used in a separate control logic.

Temperature	Range derating [°C]	Fault [°C]
Internal (enclosure)	75 ÷ 85	>85
Heatsink	70 ÷ 80	>80

In the Table 6 you can see the value of derating applied with respect to available power, moreover apply the derating higher of the two temperatures.

Temp Enclosure [°C]	Temp Heatsink [°C]	Power available [%]
75,00	70,00	100,00
75,50	70,50	95,51
76,00	71,00	91,02
76,50	71,50	86,52
77,00	72,00	82,03
77,50	72,50	77,54
78,00	73,00	73,05
78,50	73,50	68,55
79,00	74,00	64,06
79,50	74,50	59,57
80,00	75,00	55,08
80,50	75,50	50,59
81,00	76,00	46,09
81,50	76,50	41,60
82,00	77,00	37,11
82,50	77,50	32,62
83,00	78,00	28,13
83,50	78,50	23,63
84,00	79,00	19,14
84,50	79,50	14,65
85,00	80,00	10,16
85,50	80,50	5,66
86,00	81,00	1,17

Table 6: Derating Power versus Temperature.

6 BATTERY

The charging voltage of the battery is heavily dependent on the operating temperature.

This dependence requires the inclusion of an external probe to be applied in proximity of the batteries.

The thermal coefficient of lead-acid batteries⁽³⁾ is ~31.25 mV/°C for full charge and ~15.625 mV/°C for maintenance.

	Full charge (Vcycle)	Maintenance (Vstandby)	
Tamb [°C]	Voltage element [V]		
-30	16,23	14,38	
-25	16,08	14,30	
-20	15,92	14,22	
-15	15,77	14,14	
-10	15,61	14,06	
-5	15,45	13,98	
0	15,30	13,91	
5	15,14	13,83	
10	14,98	13,75	
15	14,83	13,67	
20	14,67	13,59	
25	14,52	13,52	
30	14,36	13,44	
35	14,20	13,36	
40	14,05	13,28	
45	13,89	13,20	
50	13,73	13,13	
55	13,58	13,05	
60	13,42	12,97	

Figure 9: Voltage battery charging vs. temperature.

7 TECHNICAL CHARACTERISTICS

Models	Mercurio 5k	Mercurio 10k	Mercurio 15k	
INPUT				
Voltage range (phase)		35÷120		V
Max. Current (phase)	50	100	150	Α
Range of frequency		DC÷400		Hz
OUTPUT DC				
Voltage range		20÷75		V
Nominal Voltage		12÷60		V
Max. Current	100	200	300	А
Rated power	5.000	10.000	15.000	W
Ripple		<1		%
PERFORMANCE				
Operating temperature environment		-25 ÷ 55		°C
Max temperature Heat sink		80		°C
Max efficiency		92,5		%
Operating humidity		10 ÷ 90 (RH)		%
PROTECTION				
Over temperature	Yes/derating			
Overload	Yes/derating			
Overvoltage		Yes		
Short Circuit		Yes		
Battery inversion		Yes		
Ventilation		External		
DATA				
Dimensions (h w d)	290x370x400	290x670x400	290x970x400	mm
Weight	~20	~40	~60	kg
IP protection	65			
INTERFACE AND COMMUNICATION				
Interface	RS232			
Visual indication	2 x LEDs (conne	ection points only, I	LEDS by others)	
Relay		3 x 230V 30A		
Isolated Output voltage	-10 / -	+10V (adjustable ra	ange)	

Table 7: Technicals Characteristics.

8 **EFFICIENCY**

Efficiency obtained with the version 5kW.

Current [A]	Eff. [%]
10	81,1
25	90,0
50	92,5
75	91,9
100	91,3

Table 8: Efficiency measured.

Figure 10: Performance graph as a function of power.

9 MECHANICAL FIXING AND VENTILATION

To allow the Mercurio to work in the best conditions, the mounting configuration is as shown in the figure below, with electrical contacts on the top.

For the proper functioning of the machine it requires forced ventilation, which is made by fans powered directly from the batteries but their command is discriminated from the Mercurio.

The number of fans required depends on the size, but we have a basic element that holds an Air Flow $220.8 \text{ m}^3/\text{h}$.

Mercurio	Number of fan
5k	2
10k	4
15k	6

The fans are fixed directly to Mercurio, the only precaution by the installer will be to ensure proper airflow, allow free ventilation for at least 20cm (from all sides of Mercurio).

10 ELECTRICAL CONNECTION

The possible electrical configurations are four:

- 1. Three phases (AC3)
- 2. Three phases + photovoltaic (AC3DC)
- 3. Single phase (AC1 or DC1)
- 4. Single phase + photovoltaic (AC1DC)

In the diagram below we see the typical electrical connection for the apparatus.

Figure 11: Typical electric connection.

Mercurio can accept either a three phase to single phase, but for correct recognition to occur in single-phase mode, the inputs must be connected in an appropriate manner.

Input mode	Connection mode
AC3	L1-L2-L3
AC1 or DC1(PV)	L1-L2

It is really important not to refer any input system to ground.

Addition, as provided by the telecom standard, you can connect the positive battery terminal to the ground.

10.1 Power connection

Short description of the scheme:

- AC In : voltage input to generator
- Battery: voltage output to battery
- Battery: voltage output to load
- Relay: Number 3 relay for remote control of electric generator and one for photovoltaic mode.
- LED: LEDs of state
- RS232: communication interface
- EXT Tbat: input for external battery temperature sensor.

The power contacts can be fixed with a torque of 24 Nm, because we use nuts and bolts class 4.8.

Disconnect equipment

after disconnecting the batteries, wait at least 2 minutes and then to short-circuit the battery terminals to zero the remaining charge.

10.1.1 Wire sizing

Pay attention to the sizing of cables for connection of Mercurio, because the currents are very high. The following section may be used to calculate the wire size requirements.

Name	Description		Note
R	Resistance	Ω	calculated
L	Cable length	m	depends on the system
S	Area of the cable	mm²	calculated
ρ	Electrical resistivity	Ω mm² / m	constant depends on the cable
V	Voltage drop	V	to be set
I	Current Cable	А	to be set
Р	Power loss (cable)	W	calculated

Resistance is:

$$R = \rho \frac{l}{S}$$

 $R = \frac{V}{I}$

or also:

Derive the section:

considering the power loss over the cable

 $P = V \cdot I$

 $S = \rho \cdot l \cdot \frac{I}{V}$

For example:

- L = 5m (round-trip)
- $\rho = 0.0174 \ \Omega \ mm^2 \ / \ m \ (copper)$
- V = 0.5V (to be chosen)
- I = 50A

Obtain:

- S = 8.7 mm²
- R = 0.01 Ω
- P = 25W

Obviously it is recommended to keep the power connections as short as possible, choosing a low drop voltage is important, because the reading of the battery voltage is carried out on the output terminals of Mercurio.

10.2 Three phases (AC3)

10.3 Three phases (AC3+PV)

10.6 Signal connection

Removing the cover on the top of Mercurio, you can access the main interface connectors. On the top of the Mercurio contacts are available for signal and engine control.

The numbering starts from the left.

J8 1 RL3_COM 2 RL3_NO 3 RL2_COM 4 RL2_NO 5 RL2_NC 6 RL1_COM 7 RL1_NO 8 RL1_NC	J16 1 LED1 2 GND 3 LED2 4 GND 5 Variable 6 GND	J18 1 RUN 2 GND 3 SUN 4 GND 5 EPO 6 GND 7 MISC. 8 GND	J17 1 TS-12V 2 TS-SIGN 3 TS-GND 4 RS232-TX 5 RS232-RX 6 RS232-GND
---	--	---	---

Table 9: Signal interface.

The signal 2J16(GND), 4J16(GND), 6J16(GND), 3J17(TS-GND), 6J17(RS232-GND), 2J18(GND), 3J18 (GND), 6J18(GND) and 8J18(GND) have the same electric potential.

The J18 connector the connector is for future upgrades.

NC – Normally Closed	I (not available for	r this release)
----------------------	----------------------	-----------------

COM – Common

NA – Normally Open

10.6.1 Relay

Table 10 describes the operations of the relays in different modes⁽⁴⁾.

Terminology:

NORMAL refers the relay remaining 'ON' for duration of action i.e. RL1 engaged to start and disengaged to stop; RL2 engaged for high speed, disengaged for low speed (in dual speed scenario). **MECHANICAL** refers to temporary engaging to activate a function i.e. RL1 engages for pre- set period with frequency sensing to activate the engine start motor; RL2 for stopping (deactivating the fuel solenoid.

All are pre-programmed through the Mercurio software.

	ON OFF or Variable		Dual speed	
	NORMAL	MECHANICAL	NORMAL	MECHANICAL
RL1	Switch On <u>Switch Off</u>	On	Switch On <u>Switch Off</u>	Not allowed
RL2	-	Off	High speed Low speed	Not allowed
RL3	AC3, AC1 or DC input / photovoltaic input			

Table 10: Relay function standard.

In the Figure 13 shows the internal connection of the relay⁽⁵⁾, to make a correctly external connection.

Figure 12: Flowchart of the mechanical mode.

NOTE⁽⁴⁾valid for connections made on the normally open (NO). NOTE⁽⁵⁾The relays are mounted 30A 250Vac.

Figure 13: Internal electric connection relay.

Through the software, you can set the polarity of the relay and the mode of operation (Normal, Mechanical).

You must be careful with the configuration of the relay (configuration software and physical connections), to ensure that when the Mercurio is off, the logic preset must not enable any activation to the engine.

In the mechanical mode, there exists a time duration (Max start time - delay5) of the signals to power on and power off. If the power is on, and the Mercurio detects the engine is running, it will cancel the stop command

10.6.2 LED

Mercurio has the opportunity to indicate their status through two LED's, the first indicates the status and the second state of charge of the batteries.

10.6.2.1 LED1

The first LED identifies the status of the Mercurio.

	ON	OFF	BLINK
LED1	Operative	Power off	Fault Or Stand by

When the Mercurio is in standby state the blinking of the LED indicates the reason, as reported in the Table 11.

Table 11: Legend blinking.

10.6.2.2 LED2

The second LED identifies the state of charge .

	ON	OFF	BLINK
LED2	lcost	Discharge	Vcost

In the Figure 14 shows the electrical connection of the LEDs, through the connector J16.

Figure 14: Extern Electric connection LED.

10.6.3 Analogue output

Isolated output is valid when you set the mode to variable speed, and the range of values covered by parameters in the software.

	Minimun	Maximun	
Variable	-10	10	V
Maximum output analogue signal			

10.6.4 Serial interface RS232

To establish a serial connection with Mercurio it is sufficient to connect the three signals in Table 12.

	DB9	DB15
RX	2	3
TX	3	2
GND	5	7

Table 12: RS232 connection PIN.

10.6.5 Battery temperature sensor

The external temperature sensor is made by a NTC and needs a power supply (supplied by Mercurio). The mode of connection is shown in Figure 15.

Maximum length of the current probe is 10 meters.

Probe	ITF	Color ca- ble	Connection J17
J1	Vcc	Brown	TS-V12
J2 (SQWT)	Tsense	Grey	TS-SIGN
J3	GND_temp	Black	TS-GND

Table 13: Mapping probe and interface.

Figure 15: Circuit diagram.

10.6.6 Digital input

The system has isolated inputs that allow you to control the machine without using the management software.

More precisely, the system has 4 isolated inputs:

- RUN
- SUN (not used)
- EPO
- MISC. (not used)

10.6.6.1 RUN

Closing this contact is used to start a cycle of recharging batteries, normally open (available from firmware version 2.0.4).

	1J18-2J18
OPEN	Null
CLOSE	Start a charge cycle

Be careful not to leave the contact is always closed.

10.6.6.2 EPO

Emergency Power Off (available from firmware version 2.0.4). Opening this contact will result in immediate termination of the charging cycle (if in progress) and the machine will go into standby mode.

	5J18-6J18
OPEN	Stop the charge
CLOSE	Enable to charge

Be careful not to leave the contact is always open.

10.6.7 Power Off

There is a contact that allows you to turn off the device completely (is provided normally closed).

The contact is not directly accessible on the interface board but it is located on the power board, to access it you must remove the main cover.

The connector is the JP11, identified by a red circle in the picture.

To completely turn off the Mercurio is necessary to open the contact, and in the case of multi-board (10k and 15k) will be open all together.

11 FAULT

The machine has protections that interrupt the charging of the batteries, this is necessary to preserve the integrity of the machine.

Type of Fault	Description
VHP HIGH	Rectified voltage exceeds 160V
VHP LOW	Rectified voltage less than 15V
BAD CONN.	Battery voltage out of range. Vbatt < 9V*N ⁽⁶⁾ or Vbatt > 16V*N
OVERTEMP	Tcase > 80°C Theatsink > 85°C
SHORT CIRCUIT	lout ⁽⁷⁾ > 140A (for Mercurio 5k) lout > 280A (for Mercurio 10k) lout > 420A (for Mercurio 15k)

Table 14: Fault list.

Following a fault the charger will restart automatically, if the conditions are back to normal.

12 SOFTWARE

For settings and remote control of the Mercurio there is specific software.

The software implement also one

For communicating with the Mercurio:

- One Mercurio
- One MercurioMR3.exe software
- One RS232 interface cable
- This manual
- One warranty certificate
- One PC with Microsoft Windows operating system (win 95 or better)

The software also implements the function of recording, producing logs files, these files will be saved in the same folder where the software resides "log.txt".

The serial communication port is settable through the following procedure:

- 1. Select the menu "File"
- 2. Select "Config ComPort"
- 3. Do not enter any password, press OK button.
- 4. Select your com port .
12.1 Set password (for advanced access)

Through this operation you can access more sensitive parameters of Mercurio, to be performed only by an competent authorised person.

There are three different levels of accessibility software:

- 1. Monitor Administrator
- 2.
- 3. Test

MONITOR

This user level allows the visualization of the operating data of Mercurio, the only action that allows is to start a cycle of charge.

ADMINISTRATOR

This user level allows the modification of the parameters of Mercurio, with the exception of Num Bat, Size and Relay mode.

Also enables you to modify the settings, electrical parameters and the possibility of interrupting the charge cycle.

TEST

Full control of the Mercurio, allowing you to change Num bat, size ad Relay mode.

	Password
Monitor	-
Administrator	admin
Test	test

The serial user level is settable through the following procedure:

- 1. Select the menu "File"
- 2. Select "Password"
- 3. Enter the password and press OK button

<u>o</u> On_Line							_ 🗆 🔀
File Help							
r	ne	rci	urio			Eech His Failure	harge tory System
- Power					C	meccalto	ms
Fr gen [Hz]	2	93.6	400	V Batt [Vdc]	0	49.5	60
				I batt [Adc]	, -	20	111
M C	/lercurio 5 k\ Charge I cons	√ st		l out [Adc]	0	20	111
S	itatus 2 - AC	TIVE		P out [W]	0	990	5600
				P out [%]	0	20	100
Safety T Batt [C]	-25	25	60	THeat [C]	0	22.1	80
VHP [V]	0	110	200	T Case [C]	0	23.5	60
Pronto							

Figure 16: Main page software Mercurio.

The main initial screen page will have the buttons that allow you to change the setting parameters.

Button	Description
Recharge	Starts a charge cycle
History	Records the time of operation
Failure—System	Records the errors that occurred

On the main page you can see all the electrical parameters, and also the state of the machine.

Parameter	Description
Fr Gen	Input frequency detect
Mercurio XXkW	Indicates the size of Mercurio
Discharge	Indicates state of charge (Discharge, Icost, Vcost, Mainte- nance)
Status	Operation of the Mercurio (see 4)
Vbatt	Battery voltage in Volt
Ibatt	Current Battery in Ampere
lout	Output current in Ampere
Pout [W]	Output Power in Watt
Pout [%]	Output power in % (nominal power)
Tbatt	Battery Temperature in °C
VHP	Input rectifier voltage in V
Theat	Heatsink temperature °C
Tcase	Internal temperature °C

Mercurio Set				
lmax charge	20 A	2 speed loutTH2	50	A
Vcycle	58.06 V			
Vstandby	54.06 V	V max	10	v
NumBatt	4	V min	-10	v
Size	5k 💌 W	Tacc	0.5	s
Function mode	ONOFF -	Relay		
Input mode	AC3 💌	RL1	closed ON 💌	
_ 0n/0ff		RL2	closed LOW 💌	
VbattTH1	44 V	Relay mode	normal 💌	
IbattTH1	10 A	Max start time	5	s
Power curve out-		Freq start	13.00	Hz
Frequency (H	z) Pot. (W)	Freq stop	5.00	Hz
50.1	500	D.P.F.	0.8994140625	
60	1500	Max slope	6	A/s
65.1	2000			
70	2500		Default	
75	3000		Load	
100.4	5000		Save	
	ОК	Cancel		

Figure 17: Page setup parameters.

12.3 History and failure counter

The software provides timing information in the life of Mercurio with the History of the errors had.

To read the History:

1. Select the button "Failure—System"

System Failure	s		×
Fail Data Input Line Input Freq Input Current Output Line Output Current Output Power Output Freq Battery Voltage Internal Voltage P Inverter Temp. Battery Temp. Flags 1/2 Flags 3/4 Status	· · · · · ·	Volt A/C Hertz Amp (RMS) Volt A/C Amp (RMS) Watt Hertz Volt D/C Volt D/C Celsius Celsius Bit Bit	Statistic Counters Last Fail ID 0 Failure Counter 0 o error #1 (1) o Internal Voltage P High (2) o error #2 (4) o Internal Voltage P Low (8) o error #3 (16) o error #3 (16) o error #4 (32) o error #5 (64) o Bad Connection (128) o High Power (256) o Emergency Power Off (512) o Safe Shutdown (2048) o High Temperature (4096)
Cancel			

To read the fault system:

- 1. Select the menu "Help"
- 2. Select "Firmware version"

To read the fault battery:

- 1. Select the menu "User"
- 2. Select "History"

12.4 Advanced control parameters

Through this operation you can access more sensitive parameters of Mercurio, to be performed only by an competent authorised person. May cause irreversibly damage to of Mercurio.

To read the CorrAd:

4

- 1. Select the menu "User"
- 2. Select "Corr AD"

These parameters are highly sensitive, because they go to directly modify the readings of electric quantities of Mercurio. And are exclusively to enable the calibration (offset and amplitute) of the electrical quantities.

Dialog			$\overline{\mathbf{X}}$
OFFSET-		AMPLITUDE	
VIN IBAT VOUT IOUT VBATT VHP IOUTB VAP V010 TD TD TB SVALD RFM IOUT_B IIN_C	0 -155 0 -155 -19 0 -155 0 0 0 -155 0 0 -15 0 0 -15 -11 -1	VIN 1024 IBAT 1133 VOUT 800 IOUT 1133 VBATT 1268 VHP 1836 IOUTB 1225 VAP 1024 V010 1024 TD 1024 SVALD 1024 RFM 1024 IOUT_B 1024 IU124 1024 IU125 1 IU126 1 IU126 1 IU126 1 IU126 1 IU126 1	
	OK		Cancel

To read the Parameters:

- 1. Select the menu "User"
- 2. Select "Parameters"

Parameters used exclusively for debugging. Normally these parameters must remain unchanged.

User Parameters		×
UpsAddress	1	Volt A/C
PowerOnRestart SleepDelay	0	Sec.
Option RestartDelay	8 1000	Sec.
(0K]		Cancel

12.5 Parameter description

In this section we describe the parameters of the Mercurio. These parameters are important for correct operation of the Mercurio, the wrong setting can cause system malfunctions and/or even damage to the Mercurio.

12.5.1 Imax charge

This parameter sets the maximum charging current of the connected battery, for charging at constant current.

	Min	Max	Default	
5k	15	100	50	А
10k	30	200	100	А
15k	45	300	150	А

The battery manufacturer⁽⁸⁾ recommends the charging current cannot pass the suggested limit of 0.25C during the initial charge phase. But to ensure a long life of the batteries suggest 0.1/0.2C.

For example with batteries 200Ah the maximum charging current must be 20A/40A

$$I_{\max charge} = 15\% Capacity[Ah]$$

12.5.2 Vcycle

The main stages of battery recharging (Icost Vcost & maintenance); voltage at which the batteries are brought in the constant current phase, and then maintained, constant voltage, until the current falls below the threshold.

Parameters are defined by the manufacturer and are strongly temperature dependent.

Tomp			Vcycle		
	2	3	4	5	#Battery
25 0	29,03	43,55	58,06	72,58	V

12.5.3 Vstandby

This is the 'trickle' or maintenance part of the charge cycle; the voltage to keep the battery after a full charge cycle.

Parameters are defined by the manufacturer and are strongly temperature dependent.

Tomp			Vstandby		
	2	3	4	5	#Battery
23 0	27,03	40,55	54,06	67,58	V

12.5.4 Size

Mercurio is available in three different sizes, and are selected by this parameter.

Size	Mercurio Power
5k	5000 W
10k	10000 W
15k	15000 W

12.5.5 Function mode

This parameter is used to select the operating mode of Mercurio.

Mode	Description		
ONOFF	Most simply function		
2SPEED	Mode for engines with two operating speeds		
VARIABLE	Mode for engines with controllable variation of speed		

12.5.6 Input mode

Through this parameter you can select the type of electrical input of Mercurio.

	Description
AC3	Three-phase system
AC1 ⁽⁹⁾ (DC1)	Single-phase system
DC1 (AC1)	Direct current
AC3DC	Combined three-phase system and direct current (photovoltaic)
AC1DC	Combined single-phase system and direct current (photovoltaic)

Note that not all inputs allow all modes of operation

12.5.7 VbattTH1

Adjustable voltage which you want to start charging the batteries, very sensitive parameter, because it affects heavily the battery life.

Figure 18: Depth of discharge (DOD) versus number of cycles⁽¹⁰⁾.

It can be seen in the Figure 18⁽¹¹⁾, the higher the value of discharge the shorter the battery life.

12.5.8 IbattTH1

Adjustable current at which point you want to stop charging the batteries, valid for all operating modes.

Size	Min	Max	Default	
5k	5	10	5	Α
10k	10	20	10	Α
15k	15	30	15	Α

The manufacturer recommends the charging current begins to decrease until it reaches a level of minimum charging current, also known as maintenance current which generally equals at:

$$I_{battTH1} = 0.03 \frac{A}{Ah}$$

For example with batteries 200Ah the current must be 6A

12.5.9 IoutTH2

In dual speed mode this is the current threshold that discriminates the change of speed. Parameter to be calculated carefully considering the medium loads and the size of the batteries.

Size	Min	Max	Default	
5k	20	80	50	А
10k	40	160	100	А
15k	60	240	150	А

12.5.10 Vmax & Vmin

Through this parameter, you can limit the dynamics of the signal that controls the engine acceleration mode for variable speed operation

	Min	Мах	
Vmax	-10	10	V
Vmin	-10	10	V

12.5.11 Tacc

This parameter controls the speed of response of the analogue signal to the engine.

A low value speeds up the tracking of the engine with respect to changes of the load, on the contrary a high one is slower but guarantees a greater stability of the system.

	Min	Мах	Default	
Tacc	0.3	10	0.5	S

12.5.12 Relay Mode

The relays have the possibility to implement two types of operation:

- · Normal, simplest mode that maintains a logical level for the actuations
- Mechanical, real mode in which simulates mechanical actuation

It is also possible also choose the polarity of the relay, both software and physical levels.

Care must be taken to correctly set the polarity, because if wrong it could cause unexpected commands.

	RL1	RL2
Normal	ON/OFF	HIGH/LOW 2SPEED
Mechanical	ON	OFF

In the above case the DC can be related to PV photovoltaic input.

Note that not all of the operation modes are available with 'mechanical' mode, as reported in Table 15

Function Mode	Normal	Mechanical
ONOFF	\checkmark	\checkmark
2SPEED	\checkmark	×
VARIABLE	\checkmark	\checkmark

Table 15: Relay Mode vs. OpertionOperation Mode.

12.5.13 Max start time (delay5)

Active only with mechanical mode.

Maximum time for which the signal is kept active.

	Min	Мах	Default	
Max start time	2	15	5	s

12.5.14 Freq start

Active only with mechanical mode.

Frequency in which it is considered the engine is running, at this frequency RL1 is disenabled, this is to prevent damage to the system trying to start the engine when the engine is already running.

	Min	Мах	Default	
Freq start	10	25	13	Hz

12.5.15 Freq stop

Active only with mechanical mode.

Frequency at which you consider the engine off and you can inhibit the activation of the RL2.

	Min	Мах	Default	
Freq stop	2.5	10	5	Hz

12.5.16 D.P.F.

Coefficient which considers the impedance of the alternator and can not exceed the maximum input current.

	Min	Мах	Default
D.P.F.	0.25	1	0.8

It must be guaranteed that the input of the Mercurio is not at any time to exceed the value of 50 amperes (for each input phase).

12.5.17 Max Slope

This parameter that defines the maximum slope of the output current. Can be set all the greater when the reactivity of the system (engine and generator) is fast.

	Min	Max	Default	
Slope	6.25	37.5	6.25	A/s

The parameter is observed in all the operating conditions, whereas is not respected only if there is some potentially damaging situation for the batteries and/or loads.

NAME	VALUE	DESCRIPTION
Imax charge	15 ÷ 100 A (5k) 30 ÷ 200 A (10k) 45 ÷ 300 A (15k)	Maximum current of battery chargers
Vcycle ⁽¹²⁾		Voltage range deep charge (for element)
Vstandby ⁽¹³⁾		Voltage range maintenance (trickle) phase (for element)
NumBatt	2 ÷ 5	Number of battery
Size	5kW - 10kW - 15kW	Size of Mercurio
Function Mode	ONOFF 2SPEED VARIABLE	Operating mode of Mercurio
Input Mode	AC3 – AC1(DC1) – AC3DC – AC1DC	Type of input
VbattTH1	10.5 ÷ 12.5V	Start voltage charge (for element)
IbattTH1	5 ÷ 10 A (5k) 10 ÷ 20 A (10k) 15 ÷ 30 A (15k)	Current cut off, the charging completed
loutTH2	20 ÷ 80 A 40 ÷ 160 A 60 ÷ 240 A	Current threshold of dual speed
Vmax	-10 ÷ 10V	Maximum voltage mode variable
Vmax	-10 ÷ 10V	Minumun voltage mode variable
Tacc (delay3)	0.3 ÷ 10 s	delay tracking
RL1	Closed ON Closed OFF	Polarity relay 1
RL2	Closed High Closed Low	Polarity relay 2
RL3		
Relay mode	Normal Mechanical	Relay operation mode selection
Max start Time (delay5)	2 ÷ 15 s	Maximum time command is enabled (only mechanical mode)
Freq start	10 ÷ 25 Hz	Frequency threshold for considering the engine running
Freq stop	2.5 ÷ 10 Hz	Frequency threshold for considering the engine off
D.P.F.	0.25 ÷ 1	Displacement Power Factor
Max Slope	6.25 ÷ 37.5 A/s	Maximun slope output current
Curve of power out	8 point	Setting power curve

Table 16: Summary parameters.

12.6 Detailed curve - output power

One of the major characteristics of the Mercurio is that you can set the power curve.

It is the user's responsibility to prescribe the correct power curve that represents the entire system considering engine, alternator, altitude work, etc. Through the speed range the and in consideration of worst operating conditions (temperature/altitude etc), the power converter capability to be above the actual load, alternator above the converter load and engine above the alternator capability. Mecc Alte can provide guidance on this matter if requested.

To insert of the power curve⁽¹⁴⁾ you must enter specific power points within the eight points shown in the setting parameter page of the software.

The power curve that can be set via dedicated software, has to represent the distribution of the power output as a function of the input frequency to "Mercurio" system.

This setting does not depend on the operating mode (ONOFF, 2SPEED and VARIABLE).

The "Mercurio" will faithfully follow the curve set independently of the operating mode selection, delivering the power corresponding to the frequency read on its input.

Notes regarding the setting of the power curve :

Frequency : the sequence of the inserted data must always be increasing (monotonous) and different from zero.

Power : it is accepted any value except non-negative

All fields must be filled.

As an example you can see below points and then corresponding calculated curve (Table 17 and Figure 19).

Point	Frequency ⁽¹⁵⁾ [Hz]	Power Out [W]	NOTE: For variable speed operation
1	29	0	all 8 points must be populated with ascending Hz & W from 1 to 8. The
2	30	50	maximum power and frequency for
3	33	2.825	the selected system (dependent on engine speed/power curve and
4	33,3	2.875	frequency with the number of pole
5	43,3	4.375	always be at point 8 and the pro-
6	49	4.906	gressively less Hz/W in point 7
7	50	5.000	alternator/Mercurio/load system.
8	60	5.000	

Table 17: Example of points selected.

Mercurio will take care to follow the inserted points, linear interpretation in the intervals.

Figure 19: Resulting curve.

1) Single speed (ONOFF)

The curve is correct if at steady state the input frequency is greater than or equal to 50 Hz; then Mercurio will provide all 5 kW available.

2) Dual speed

Choosing two working points suitably it will correspond two working points of the described curve. For example LOW (35Hz) at about 3kW and >=50Hz for HIGH at full power.

3) Variable

The linear signal is not directly connected to the power curve but it adapts to search for the necessary power to support the system (loads + batteries).

In this mode, if the input frequency is greater than the last value entered in the table 17, then the system will not accelerate.

The curve is followed in its trend varying the Mercurio load.

13 OPTIONAL

The machine various many options, are:

- Many different interface
- Input DC from photovoltaic or wind
- Display LCD for monitoring

13.1 Interface USB

Adding an external interface is also possible to have the Interface USB communication.

13.2 Interface RS485

Adding an external interface is also possible to have the Interface RS485 communication.

13.3 Interface ModBus

Optional adapter with firmware / software and adding an external interface is also possible to have the interface ModBus communication.

13.4 Interface Ethernet

Optional adapter with firmware / software and adding an external interface is also possible to have the interface Ethernet communication.

13.6 Display

The reporting of the operational state of the Battery Charge is provided by:

- eight warning lights (LED)
- a liquid crystal display LCD (16x2)
- an audible warning device
- four buttons for power, shutdown, consultation display and system customization

1	LED0	ON	System active
2		ON	Engine enable
	LEDI	OFF	Engine disable
3	LED2	ON	High speed
		OFF	Low speed
		ON	Linear ±10V
4	LED3	OFF	On/Off o 2Speed
5 LE		ON	CHARGE Constant current charging
	LED4	OFF	Discharge
		Blink	MAINTENANCE Charge constant voltage
6		ON	Battery Low
LED5		OFF	Battery OK
7	LED6	-	Not used
8	LED7	-	Not used
9	ESCAPE		
10	LEFT		
11	RIGHT		
12	ENTER		

14 ENCLOSURE

14.1 Mercurio 5k

14.3 Mercurio 15k

15 CERTIFICATION

Available soon.

16 ORDINARY SERVICE

Use a soft and dry cloth to clean the front panel and the plastic part. Do not use any alcohol liquid and do not spray any liquid inside the unit.

The normal working life of the battery is 3/4 years: a wrong use could reduce its life. Disconnect the Mercurio if it is stopped for long time. Change the battery with ones of the same type.

In case of call to the Service Centre, this information will be asked:

- 1. Model of the unit and serial number.
- 2. Purchase date.
- 3. Detailed description of the problem.

Technical Service

In case of any suspicious behaviour of the unit contact the Mecc Alte Service Centre.

The producer is not responsible in case of not allowed modifies on the unit made by the client or not authorised third party.

To have information about the nearest Service Centre contact.

Mecc Alte S.p.A. via Roma, 20 36051 Creazzo (VI). Tel +39 0444 396111, Fax +39 0444 396166 email info@meccalte.it - aftersales@meccalte.it

16.1 Disposal informations

The metal parts of the cabinet, both the varnished ones and the stainless steel ones, are regularly recovered by companies specialised in the scrapping of metals

It is mandatory that Electronic cards have to be disposed of companies specialised in the disposal of electronic components.

The disposal of other parts making up the Mercurio, i.e. rubber, gaskets, plastic materials and wiring has to be assigned to companies specialised in the disposal of industrial materials.

APPENDIX A

BATTERY CHARGE MESSAGE STRUCTURE

FROM FIRMWARE VERSION 2.0.6

06/03/2014

1. Generalities

In order to connect different charger Mercurio (up to a maximum of 31) using a single serial line RS-485, has been implemented a communication protocol appropriate.

This protocol, which is compatible with the situation of a single equipment connected with RS-232 line, provides that each charger is identified by a code (or address) from 0 to 31.

Distinction between address and data/other byte:

- Byte address starts with "0"
- Byte command starts with "1"

Generic command sent to a charger:

```
| BYTE ADDRESS | BYTE COMMAND |
|1|x|x|C5|C4|C3|C2|C1|0|R7|R6|R5|R4|R3|R2|R1|
```

A response packet:

```
| ADDRESS-128 | BYTE COMMAND | HEX DATA | CHECKSUM HI | CHECKSUM LO |
```

"HEX DATA": group of bytes of response to the command (represented hexadecimal). It is not necessary to know the number of bytes of the field "HEX DATA", because the number is known to the control unit that requires the command.

"CHECKSUM HI" e "CHECKSUM LO": sum of all previous bytes.

The code-address is stored in the EEPROM microcontroller present in the charger, and it is preset to "1" during production and can be changed later via software with an appropriate command.

However, it was established that all the equipment, regardless of the identifier selected, respond to commands which begin at address 0.

This document also describes some of the functionality of the charger Mercurio (RS232):

- command a charge cycle
- the interruption of the charge
- characteristic parameters of Mercurio
- electrical values measured
- state of Mercurio

Each battery charge, after connecting the battery, the control board has power. In this situation, the charger is able to communicate through the RS232 communication port and then to respond to various commands even when it is not providing power.

We can identify two were typical for the charger Mercurio:

STAND-BY

Waiting phase of the conditions appropriate for the activation of the charger

ON-LINE

Current status of the battery charger, comprising the 3 states of charge (Discharge, Charge Icost, Charge Vcost, Maintenance).

The charger will answer or not to a given command if the operation status will be compatible. For example, when you want to set new parameters to the charger, the machine will go into "STAND-BY" as such parameters must be stored in EEPROM, an operation that executes only when the firmware is not dedicated to the generation of output.

The charger can be placed in the "STAND-BY" using the STOP command.

A control program that manages the charger Mercurio must always, as first operation, to determine which type of group is connected. Therefore using the command RELEASE VERSION from which it obtains a string which produces the type of group is connected and its firmware version.

Some indications of the legend :

* A character in double quotation marks must be interpreted as the ASCII character it represents. Example: "1" = byte dec. 49

- * The symbol CR = byte dec. 13
- * The symbol SOH = byte dec. 1
- * The symbol EOT = byte dec. 4

* The symbol "+" is not part of the bytes transmitted but only used as a separator to highlight parts of the message.

* With the abbreviation M[m] means the message data received from the program containing "m" bytes in response to a command.

* Therefore the indication M(1) indicates the first byte contained in M(), M(2) the second, ecc. The symbol HEXM(i) indicates the pair of bytes that are obtained by converting the byte in hex M(i) whereas HEXM[n] indicates that the number "n" is the length in bytes of the message M[m] after converting hexadecimal (n = m * 2).

* With the symbol "X" indicates one or more bytes in the message is not currently used.

 \star With the symbol SQR(...)is defined as the square root of the expression in brackets.

* With the symbol AND means the operation carried out on all the bits for the two operands considered. Ex. : (53 AND 30)=(00110101 AND 00011110)=20=00010100

Warning: the commands to be sent to the charger consist of one (or more) pairs of characters. In order for these commands are properly received is necessary that between one character and the next transmitted to the charger are separated by a time delay of at least 10 milliseconds.

The serial port of the control unit must be set to 9600 baud, 8 data bits, 1 stop bit, no parity.

2. Command RECHARGE

You can start a charge cycle

```
COMMAND : ADDR + "M" + HEXM[6] + HEXTxChkSum[4] -> (12 Bytes)
M(1) = 0;
M(2) = 1;
M(3) = 2;
RETURN : ADDR@ + "P" (Ack)
```

3. Command STOP MERCURIO

You can stop charging the batteries by sending this command.


```
COMMAND : ADDR + "S" + HEXM[4] + HEXTxChkSum[4] -> (10 bytes)
M(1) = 0;
M(2) = 0;
RETURN : ADDR@ + "P" (Ack)
```

4. Command IngVal

The data reported in this screen correspond to the electrical parameters measured in real time by group.

COMMAND : ADDR + "3" (2 bytes) RETURN : ADDR@ + CMD + HEXM[104] + HEXTxChkSum[4] 26 Short ==> 52 Bytes --> 2 + 104 + 4 = 110 bytes

CALCULATION DATA :

	LINE	(V)	=	M(1)	;M(2)			N.D.			
	FREQ	(Hz)	=	M(3)	;M(4)			N.D.			
	IBAT	(A)	=	((M(5)+M(6)*28	3)					
	VVENTN	(V*8)	=	((M(7)+M(8)*28	3)					
	IOUT	(A)	=	((M(9)+M(10)*2	28)					
	POUT	(W)	=	(M(1	1)+M(12)*2	28)					
	FREQ0	(Hz)	=	1/((M(13)+M(14	1)*2	28)*40	*10-6)			
	VBATT	(V*32)	=	(M(1	5)+M(16)*2	28)					
	VHP	(V)	=	(M(1	7)+M(18)*2	28)					
	VHN	(V)	=	M(19);M(20)			N.D.			
	KPFCP	()	=	M(21);M(22)			Reserved			
	KPFCN	()	=	M(23	5);M(24)			Reserved			
	INVT	(°C)	=	(M(2	25)+M(26)*2	28)/	/128				
	CASET	(°C)	=	(300	00-(M(27)+	-M (2	28)*28))/256			
	FLAG12	()	=	M(29);M(30)			Reserved			
	FLAG34	()	=	M(31);M(32)			Reserved			
	STATUS	()	=	(M(3	3)+M(34)*2	28)					
	REASON	()	=	(M(3	5)+M(36)*2	28)					
	VALD	(V)	=	(M(3	57)+M(38)*2	28)					
	TAGLIA	(W)	=	(M(3	9)+M(40)*2	28)*	5000				
	NBATT	()	=	(M(4	1)+M(42)*2	28)					
	IMED	()	=	M(43	5);M(44)			Reserved			
	I1SEC	()	=	M(45);M(46)			Reserved			
	V010	()	=	M(47);M(48)			Reserved			
	POWER%	(%)	=	(M(4	9)+M(50)*2	28)					
	STATUS	C()	=	(M(5	1)+M(52)*2	28)					
	TxChkS	um	= M	1(53)	*28+M(54)						
	* <u>Chec</u>	k vali	dit	y of	data :						
	ini anti	<u></u>			100 <u>-</u> 100	_	טמחחע				
COMMIN	unicali	.011			ADDA - 120 CMD	_	"3" "3"				
					UIIU Trach le Cum	_	רט מחחע נ				M (52)
					INCHROUM	_	ADDKG-	(CMD + UPYM (T) +	II립시법 (乙) -	· • • • • • • • • • • • • • • • • • • •	™ (JZ)

Legend:

VARIABLE	DESCRIPTION			
Line	ND			
Freq	ND			
Ibat	Battery current			
VventN	Voltage fan (negative, subtracting this voltage to the battery voltage is ob- tained by the voltage of the external fans)			
lout	Output current			
PoutW	Output power			
Freq0	Input frequency			
Vbatt	Battery voltage			
VphvP	Input voltage is rectified			
VphvN	ND			
KpfcP	ND			
KpfcN	ND			
InvTemp	Heatsink temperature			
CaseTemp	Internal temperature			
Flags12	Flags12 Mercurio (internal use)			
Flags34	Flags34 Mercurio (internal use)			
	State of Mercurio			
Status	3 standby			
	2 online			
	Id last fault			
	3 High VHP			
Reason	5 LOW VHP			
	15 Shortage			
	17 EPO			
Tbatt	Battery temperature			
Taglia	Mercurio size			
BattNum	Number of batteries			
Vth	Threshold voltage (internal use)			
I1Sec	- (internal use)			
IC	- (internal use)			
v010in	- (internal use)			
PowerPercent	Output power in % (nominal power)			
	Stato di carica delle batterie (scarica, icost, vcost e mantenimento)			
	0 Discharge			
StateCcb	1 Charge Iconst			
	2 Charge Vconst			
	3 Maintenance			

5. Command RELEASE VERSION

The firmware version on the battery charger can be displayed by this command

COMMAND : ADDR + "V" (2 bytes). RETURN : ADDR@ + CMD + HEXM[32] + HEXTxChkSum[4] 20 char ==> 40 Bytes --> 2 + 40 + 4 = 46 bytes

* Check validity of data :

Communication ---> ADDR - 128 = ADDR@ CMD = "?" TxChkSum = ADDR@+CMD+HEXM(1)+HEXM(2)+...+HEXM(20)

In this case M() is simply a string of 20 printable characters.

6. Command Read MercurioSET

Sending this command to the charger it will read the entire set of characteristic parameters of the Mercurio.

```
: ADDR + "Q" (2 bytes)
COMMAND
RETURN : ADDR@ + CMD + HEXM[168] + HEXTxChkSum[4]
42 Short ==> 84 Bytes --> 2 + 168 + 4 = 174 bytes
CALCULATION OF DATA :
      AMPEREH (A)
                    = (M(1)+M(2)*28)* SIZE (W) / 5000
                    =
                         (M(3)+M(4)*28)/64
      VCYCLE (V)
      VSTANDBY(V) =
                        (M(5)+M(6)*28)/64
      NBATT
                   =
                         (M(7) + M(8) \times 28)
      SIZE (W)
                   =
                         (M(9)+M(10)*28)*5000
                   =
      FMODE
                         (M(11) + M(12) \times 28)
                   = (M(13)+M(14)*28)
      INMODE
      VBATTTH1(V) =
                         (M(15)+M(16)*28)/64
                  = M(17);M(18)
      DELAYV1
                                                   Reserved
      IBATTTH1(A) = (M(19) + M(20) * 28) / 8
      DELAYI1 = M(21); M(22)
                                                    Reserved
      IBATTTH2(A) = (M(23) + M(24) * 28) / 8
                  = M(25);M(26)
      DELAYUP2
                                                    Reserved
                    = M(27);M(28)
      DELAYDO2
                                                    Reserved
      VMAX(V)=((M(29) + M(30) * 28) * 20/2000) - 10VMIN(V)=((M(31) + M(32) * 28) * 20/2000) - 10
      DELAY3(s) = (M(33) + M(34) \times 28) / 50
      CONOFF
                   = (M(35)+M(36)*28)
                  = (M(37)+M(38)*28)
      C2SPEED
                   =
      RELAYM
                         (M(39) + M(40) * 28)
      P[0](W)
P[1](W)
P[2](W)
P[3](W)
                   =
                         (M(41) + M(42) \times 28)
                    =
                         (M(43) + M(44) \times 28)
                   =
                         (M(45)+M(46)*28)
                   =
                        (M(47)+M(48)*28)
      P[4](W)
                  = (M(49)+M(50)*28)
                  = (M(51)+M(52)*28)
      P[5](W)
                  = (M(53)+M(54)*28)
      P[6](W)
                   =
      P[7](W)
                         (M(55)+M(56)*28)
                   =
      F[0](Hz)
                         1/(((M(57)+M(58)*28)*40*10-6))
                    =
      F[1](Hz)
                         1/(((M(59)+M(60)*28)*40*10-6))
      F[2](Hz)
                    = 1/(((M(61) + M(62) \times 28) \times 40 \times 10 - 6))
      F[3](Hz)
                  = 1/(((M(63) + M(64) \times 28) \times 40 \times 10 - 6))
                  = 1/(((M(65) + M(66) \times 28) \times 40 \times 10 - 6))
      F[4](Hz)
                  = 1/(((M(67) + M(68) \times 28) \times 40 \times 10 - 6))
      F[5](Hz)
                  = 1/(((M(69) + M(70) \times 28) \times 40 \times 10 - 6))
      F[6](Hz)
                  =
      F[7](Hz)
                         1/(((M(71)+M(82)*28)*40*10-6)
      DPF
                    =
                        (M(73)+M(74)*28)/1024
      MAXSTIME(s) = (M(75) + M(76) \times 28)
      SLOPE (A/s) = (M(77) + M(78) \times 28) \times 6.25
      FSTART(Hz) = \frac{1}{((M(79) + M(80) + 28) + 40 + 10 - 6)}
      FSTOP(Hz) = 1/(((M(81)+M(82)*28)*40*10-6)
DUMMY3 = M(83);M(84) Reserv
                                                   Reserved
      TxChkSum = M(85) * 28 + M(86)
     * Check validity of data :
                          ADDR - 128 = ADDR@
communication
                  --->
                          CMD
                                  = "O"
                          TxChkSum = ADDR@+CMD+HEXM(1)+HEXM(2)+...+HEXM(84)
                                                                          MERCURIO Technical Manual - rev. 04 - pag. 71
```

Legend:

VARIABLE	DESCRIPTION				
Ampereh	Maximun current of battery charges				
Vcycle	Vcycle (only read)				
Vstandby	Vstandby (only read)				
Nbatt	Number of battery				
	Size:				
Size (BeardNum)	1 -> 5000				
	2 -> 10000				
	3 -> 15000				
	Mode of operation				
fmode (enable)					
	1 -> 2SPEED				
	2 -> LINEARE (VARIABLE)				
	l ype of input				
inmada	10 -> DC1				
(input_mode)	21 > AC2				
(input_noue)	111 -> DCAC1				
	131 -> DCAC3				
VbattTH1	Start voltage charger				
delav//1					
IbattTH1	Current cut-off the charging completed				
dolovi1					
	Current threshold of dual apoad				
	RISERVATO				
(delay/Down2)	RISERVATO				
(nwm lin max)	Maximun voltage mode variable				
Vmin(nwm lin min)	Minimun voltage mode variable				
delay3	Delay tracking				
uelay5					
	1 -> "OPEN" Engine Off				
Conoff (comp_onoff)	1 -> "CLOSE" Engine On				
conten (comp_enen)	0 -> "OPEN" Engine On				
	0 -> "CLOSE" Engine Off				
	Polarity Relay Dual Speed				
Clanad	1 -> "OPEN" Engine High				
Czspeed	1 -> "CLOSE" Engine Low				
(comp_zspeed)	0 -> "OPEN" Engine Low				
	0 -> "CLOSE" Engine High				
	Relay operation mode selection				
Relaym (rele_mod)	1 -> Normale				
	0 -> Meccanica				
p[8] (potenza[8])	eight points of the power curve (power) p[0]>p[1]>>p[7]				
	eight points of the power curve (frequency)				
f[8] (pfreq[8])	f[0]>f[1]>>f[7]				
DPF (fattore)	Displacement Power Factor				
Maxstima (delav5)	Maximun time command is enabled (only mechanical mode)				
Slope	Maximun slope output current (step of 6.25A/s)				
fstart (pf_start)	Frequency threshold for considering the engine running				
fstop (pf_stop)	Frequency threshold for considering the engine off				
dummv3	RISERVATO - NON USATO				
7. Command Write MercurioSET

Sending this command to the charger it will send the entire set of characteristic parameters of the Mercurio.

```
_____
COMMAND : ADDR + "U" HEXM[168] + HEXTxChkSum[4] (174 bytes)
       (M(1) + M(2) * 28) = AMPEREH(A) / SIZE (W) * 5000
       (M(3) + M(4) * 28) = VCYCLE (V)
                                                        Read Only
       (M(5) + M(6) * 28) = VSTANDBY(V)
                                                       Read Only
       (M(7) + M(8) \times 28) = NBATT
       (M(9) + M(10) * 28) = SIZE(W) / 5000
       (M(11) + M(12) \times 28) = FMODE
       (M(13) + M(14) \times 28) = INMODE
       (M(15) + M(16) * 28) = VBATTTH1(V) * 64
       M(17); M(18) = DELAYV1
                                                       Reserved
       (M(19) + M(20) * 28) = IBATTTH1(A) * 8
       M(21);M(22) = DELAYI1
                                                        Reserved
       (M(23) + M(24) * 28) = IBATTTH2(A) * 8
      M(25);M(26) = DELAYUP2
M(27);M(28) = DELAYDO2
                                                      Reserved
                                                        Reserved
       (M(29) + M(30) \times 28) = (VMAX(V) + 10) \times 100
       (M(31) + M(32) \times 28) = (VMIN(V) + 10) \times 100
       (M(33)+M(34)*28) = DELAY3(s)*50
       (M(35) + M(36) \times 28) = CONOFF
       (M(37) + M(38) \times 28) = C2SPEED
       (M(39) + M(40) \times 28) = RELAYM
       (M(41) + M(42) \times 28) = P[0](W)
       (M(43) + M(44) * 28) = P[1](W)
       (M(45) + M(46) \times 28) = P[2](W)
       (M(47) + M(48) \times 28) = P[3](W)
       (M(49) + M(50) \times 28) = P[4](W)
       (M(51) + M(52) \times 28) = P[5](W)
       (M(53) + M(54) \times 28) = P[6](W)
       (M(55) + M(56) \times 28) = P[7](W)
       (M(57) + M(58) \times 28) = 1/(F[0](Hz) \times 40 \times 10 - 6)
       (M(59) + M(60) \times 28) = 1/(F[1](Hz) \times 40 \times 10 - 6)
       (M(61) + M(62) \times 28) = 1/(F[2](Hz) \times 40 \times 10 - 6)
       (M(63) + M(64) \times 28) = 1/(F[3](Hz) \times 40 \times 10 - 6)
       (M(65) + M(66) * 28) = 1/(F[4](Hz) * 40 * 10 - 6)
       (M(67) + M(68) \times 28) = 1/(F[5](Hz) \times 40 \times 10 - 6)
       (M(69) + M(70) * 28) = 1/(F[6](Hz) * 40 * 10 - 6)
       (M(71)+M(82)*28) = 1/(F[7](Hz)*40*10-6)
       (M(73)+M(74)*28) = DPF*1024
       (M(75) + M(76) \times 28) = MAXSTIME(s)
       (M(77) + M(78) \times 28) = SLOPE(A/s)/6.25
       (M(79) + M(80) * 28) = 1/(FSTART(Hz) * 40 * 10 - 6)
       (M(81) + M(82) * 28) = 1/(FSTOP(Hz) * 40 * 10 - 6)
                      = DUMMY3
       M(83);M(84)
                                                        Reserved
RISPOSTA : ADDR@ + "P" (Ack)
```

N.B. It is recommended that before writing the Mercurio SET perform a read command, and change only the values needed.

REVISION HISTORY		
Revision	Date	Description
rev.00	08/13	Initial Release - DRAFT
rev.01	09/13	Modified page 41-42 and Table 4
rev.02	09/13	Modified Table 9
rev.03	12/13	From release R1 to R3-1
rev.04	07/14	Added Appendix A

December 2013 - rev.03

MECC ALTE SPA

via Roma, 20 - 36051 Creazzo (VI) Tel +39 0444 396111 - Fax +39 0444 396166 e-mail : aftersales@meccalte.it sito web : www.meccalte.com

AUSTRALIA

MECC ALTE ALTERNATORS PTY LTD 10 DUNCAN ROAD, PO BOX 1046 DRY CREEK, 5094 SOUTH AUSTRALIA TEL. +61 08/83498422 FAX +61 08/83498455 e-mail : aftersales@meccalte.com.au

CHINA

MECC ALTE ALTERNATOR (HAIMEN) LTD 755 NANHAI EAST ROAD JIANGSU HAIMEN ECONOMIC DEVELOPMENT AREA 226100 PEOPLE'S REPUBLIC OF CHINA TEL: 86 513-82325758 FAX: 86 513-82325768 e-mail: aftersales@meccalte.cn

DEUTSCHLAND

MECC ALTE GENERATOREN GmbH ENSENER WEG 21 D-51149 KÖLN TEL. 0 22 03 / 50 38 10 FAX 0 22 03 / 50 37 96 e-mail : aftersales@meccalte.de

ESPAÑA

MECC ALTE ESPAÑA S.A. C/ RIO TAIBILLA, 2 POLIG. IND. LOS VALEROS 03178 BENIJOFAR (ALICANTE) TEL. 096/6702152 FAX 096/6700103 e-mail : aftersales@meccalte.es

FAR EAST

MECC ALTE (F.E.) PTE LTD 19 KIAN TECK DRIVE SINGAPORE 628836 TEL. +65 62 657122 FAX +65 62 653991 e-mail : aftersales@meccalte.com.sg

FRANCE

MECC ALTE INTERNATIONAL S.A. Z.E.LA GAGNERIE 16330 ST.AMANT DE BOIXE TEL. 0545/397562 FAX 0545/398820 e-mail : aftersales@meccalte.fr

INDIA

MECC ALTE INDIA PVT LTD PLOT No. -1, SANASWADI - TALEGAON DHAMDHERE ROAD TALUKA : SHIRUR, DISTRICT : PUNE - 412208 MAHARASHTRA, INDIA TEL. +91 2137 619600 - FAX +91 2137 619699 e-mail : aftersales@meccalte.in

UNITED KINGDOM

MECC ALTE U.K LTD 6 LANDS' END WAY OAKHAM RUTLAND LE 15 6RF TEL. 1572/771160 FAX 1572/771161 e-mail : aftersales@meccalte.co.uk

U.S.A. AND CANADA

Mecc Alte Inc. 1229 Adams Drive McHenry, II. 60051 Tel. 815-344-0530 Fax.815-344-0535 Email : aftersales@meccalte.us

