In just a few short years from now the demand for electricity will be uncomfortably close to the combined generating power of both home and imported power. There has been significant investment in renewables and wind in particular for the ‘green’ imperative but, sadly, the capacity is now only around 13–15% of the nation’s demand.

That’s the way the wind is blowing and the wind doesn’t look like changing direction any time soon.

Furthermore, the gas and coal power stations are being decommissioned to align with emissions legislations from Brussels, and any nuclear alternatives will take years to come on line.

Consequently, there is an understandable requirement for embedded or distributed power generation sources to secure supplies and to export (either partly, wholly, or as part of a smart supply) to keep the country running through all power cycles. All of this means that relatively small generators, diesel or gas, reciprocating or turbine, are connected to the grid and are increasing in their percentage contribution.

The grid, as we know it now, is fixed in volts and frequency and fairly immovable. The grid of the future with increasing wind power input and lighter generators (say 30kW to 5mW) will be less so and subjected to volts and frequency excursions exceeding what we see now.
It is with all of this in mind that Transmission System Operators (TSO) and Distribution System Operators (DSO) in their own countries are applying their technical requirements for such connected generators. These are called the Grid Codes and their purpose is to ensure the stability of power supply.

For example, if a fault occurs in a very high voltage part of the network, and shuts down a particular region, the transient effects in the transmission line should not cause a daisy chain of smaller generators disconnecting from the grid thus exacerbating the power loss of the original fault.

The problem is European wide and even further, and there are moves to standardise on what the Grid Codes should be, although in all likelihood there will remain differences as it seems too difficult to align all of the requirements. The need for the codes is nevertheless vital to secure reliable power supplies in the future.

Static state

The static requirements in terms of voltage, frequency, power factor and kVA are quite straightforward, but it is the dynamic requirements where special attention is necessary. Looking below at the original generator requirements of EN60034-1 and then EN50160 you can see that the operating window of voltage / frequency has widened significantly.

In the main the conditions are:
- Voltage within +10% 15%
- Frequency within +3% -5%
- Lagging & Leading power factor

The genset and alternator specifically must consider this in its design and size selection.

Dynamic State

In extreme conditions the generator is required to NOT disconnect from the grid... even if the grid happens to disappear.

We are talking of short periods and while Grid Codes are not yet agreeing, the standard referred to here is a period of 150ms. After the grid returns the realigning of generator to grid can impart significant stress, if not catastrophic failure to the alternator and even the engine. This event is called a Fault Ride Through (FRT) or Low Voltage Ride Through (LVRT). Again the alternator design and selection is key.

Prescriptions of EN60034-1:
(zone A)
- Voltage: ± 5% Vn
- Frequency: ± 2% Fn

New prescriptions for Voltage:
EN50160
- Voltage: -15% +10% Vn

New prescriptions for Frequency:
EN50160
- Frequency: -5% +3% Fn
For type-1 generating unit, synchronous generator directly connected to the network (only through the generator transformer), the power station shall not disconnect even in the conditions shown in the pictures.

The reactive power of the generating plant must be adjustable. Any reactive power value resulting from the characteristic must automatically adapt within 10 seconds for inductive load and adjustable between 10 and 60 seconds for capacitive load.
Alternators operating to these requirements must either satisfy the demands within the standard design of the machine or be redesigned to comply. The latter does have an effect on cost, availability, and stock flexibility. This does appear to be a route taken by a number of manufacturers.

But, with Mecc Alte the standard design can withstand the rigours the standards as we now understand them.

There are specific conditions to address during a LVRT event. In the 1st instance the voltage at the point of generator connection drops and the load is effectively lost onto the alternator. The driver unit will likely overspeed can cause pole slip, but this will depend on the inertia of the genset and the reactance values of the chosen alternator. In the 2nd instance the fault clears and the genset – still connected to the grid, must instantaneously realign to grid frequency and voltage. This, following a LVRT ‘speed up’ creates tremendous mechanical and electrical forces on both engine and alternator.

Mecc Alte... Leading the Way

Typically the design aspects of the Mecc Alte alternators for the frame, the shaft and disc hubs, are more robust than for the competitors. In machine selection (refer to the chart below) the machines inertia constant must be specifically designed or fundamentally able to resist speed changed associated with pole slip in LVRT.

The copper headers are low profile with mechanical spacing between phases to enhance cooling but to also resist the magnetic forces seen in fault conditions or re-sync with the grid. Tests of up to 100 consecutive short circuits have passed without failure to the integrity of the windings, and also the robustness of the mechanical design.
From 6kVA to 2380kVA (50Hz), the Mecc Alte products will satisfy the requirements of EN50160-A70 Terna and (UE) 2016/631. There is a 15% ÷ 30% derate to the usual published powers which is derived from the combination of undervoltage up to -15%, overfrequency at +1.5Hz and leading power factor at 0.95.

A full list of the powers available are shown below:

<table>
<thead>
<tr>
<th>Generator Type</th>
<th>400V @ 50Hz - 125/40°C (H)</th>
<th>Grid Code Rating</th>
<th>Derating</th>
<th>Industrial Rating kVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECP28 1V54 C</td>
<td>7.5</td>
<td>20%</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ECP28 2V54 C</td>
<td>10</td>
<td>20%</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ECP28 1S4 C</td>
<td>12.5</td>
<td>20%</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ECP28 2S4 C</td>
<td>15</td>
<td>20%</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>ECP28 3S4 C</td>
<td>17.5</td>
<td>20%</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>ECP28 M4 C</td>
<td>20</td>
<td>20%</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ECP28 VL4 C</td>
<td>30</td>
<td>20%</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>ECP30 1M4 C</td>
<td>20</td>
<td>20%</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ECP30 2M4 C</td>
<td>25</td>
<td>20%</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ECP30 3M4 C</td>
<td>30</td>
<td>20%</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>ECP30 2L4 C</td>
<td>35</td>
<td>20%</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>ECP30 2L4 C</td>
<td>40</td>
<td>20%</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>ECP32 1S4 C</td>
<td>37.5</td>
<td>20%</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>ECP32 2S4 C</td>
<td>45</td>
<td>20%</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>ECP32 2M4 C</td>
<td>50</td>
<td>20%</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>ECP32 2L4 C</td>
<td>62.5</td>
<td>20%</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>ECP32 2L4 C</td>
<td>75</td>
<td>20%</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>ECP32 2L4 C</td>
<td>82.5</td>
<td>20%</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>ECP34 1S4 C</td>
<td>87.5</td>
<td>15%</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>ECP34 2S4 C</td>
<td>100</td>
<td>15%</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>ECP34 2M4 C</td>
<td>125</td>
<td>15%</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>ECP34 2L4 C</td>
<td>135</td>
<td>15%</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>ECP34 2L4 C</td>
<td>150</td>
<td>15%</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>ECP34 2L4 C</td>
<td>165</td>
<td>15%</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>ECO38 1S4 C</td>
<td>180</td>
<td>15%</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>ECO38 2S4 C</td>
<td>200</td>
<td>15%</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>ECO38 1M4 C</td>
<td>225</td>
<td>15%</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>ECO38 2M4 C</td>
<td>250</td>
<td>15%</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>ECO38 2L4 C</td>
<td>300</td>
<td>15%</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>ECO38 2L4 C</td>
<td>350</td>
<td>15%</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>ECO38 VL4 C</td>
<td>370</td>
<td>15%</td>
<td>315</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator Type</th>
<th>400V @ 50Hz - 125/40°C (H)</th>
<th>Grid Code Rating</th>
<th>Derating</th>
<th>Industrial Rating kVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO40 154 C</td>
<td>400</td>
<td>15%</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>ECO40 2S4 C</td>
<td>450</td>
<td>15%</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>ECO40 3S4 C</td>
<td>500</td>
<td>15%</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>ECO40 4L4 C</td>
<td>550</td>
<td>15%</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>ECO40 4L4 C</td>
<td>625</td>
<td>15%</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>ECO40 3L4 C</td>
<td>680</td>
<td>15%</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>ECO40 4L4 C</td>
<td>750</td>
<td>30%</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>ECO43 1S4 A</td>
<td>820</td>
<td>15%</td>
<td>697</td>
<td></td>
</tr>
<tr>
<td>ECO43 2S4 A</td>
<td>930</td>
<td>15%</td>
<td>791</td>
<td></td>
</tr>
<tr>
<td>ECO43 1M4 A</td>
<td>1025</td>
<td>30%</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>ECO43 2M4 A</td>
<td>1150</td>
<td>30%</td>
<td>805</td>
<td></td>
</tr>
<tr>
<td>ECO43 2L4 A</td>
<td>1300</td>
<td>30%</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>ECO43 VL4 A</td>
<td>1400</td>
<td>15%</td>
<td>1190</td>
<td></td>
</tr>
<tr>
<td>ECO46 1S4 A</td>
<td>1500</td>
<td>15%</td>
<td>1275</td>
<td></td>
</tr>
<tr>
<td>ECO46 1.5S4 A</td>
<td>1650</td>
<td>15%</td>
<td>1403</td>
<td></td>
</tr>
<tr>
<td>ECO46 2S4 A</td>
<td>1800</td>
<td>15%</td>
<td>1530</td>
<td></td>
</tr>
<tr>
<td>ECO46 1L4 A</td>
<td>2100</td>
<td>15%</td>
<td>1785</td>
<td></td>
</tr>
<tr>
<td>ECO46 1.5L4 A</td>
<td>2300</td>
<td>15%</td>
<td>1955</td>
<td></td>
</tr>
<tr>
<td>ECO46 2L4 A</td>
<td>2500</td>
<td>15%</td>
<td>2125</td>
<td></td>
</tr>
<tr>
<td>ECO46 VL4 A</td>
<td>2800</td>
<td>15%</td>
<td>2380</td>
<td></td>
</tr>
</tbody>
</table>

In case of Class F overtemperature rise applications, refer to the following derating factors:
- 5% when in Class H we apply 15%
- 10% when in Class H we apply 20%
- 15% when in Class H we apply 30%

Compliant And Ready

With the above range to be extended upwards over the next few years, Mecc Alte is your perfect independent partner for grid power alternators, totally focussed on the needs of OEM’s to fulfil their obligations now and for the future.
MECC ALTE
SPA (HQ)
Via Roma
20 – 36051 Creazzo
Vicenza – ITALY
T: +39 0444 396111
F: +39 0444 396166
E: info@meccalte.it
aftersales@meccalte.it

MECC ALTE
PORTABLE
Via A. Volta
137038 Soave
Verona – ITALY
T: +39 0456 173411
F: +39 0456 101880
E: info@meccalte.it
aftersales@meccalte.it

MECC ALTE
POWER PRODUCTS
Via Melaro
2 – 36075 Montecchio Maggiore (VI) – ITALY
T: +39 0444 1831295
F: +39 0444 1831306
E: info@meccalte.it
aftersales@meccalte.it

ZANARDI
ALTERNATORI
Via Dei Laghi
48/6 – 36077 Altavilla
Vicenza – ITALY
T: +39 0444 370799
F: +39 0444 370330
E: info@zanardialternatori.it

UNITED KINGDOM
Mecc Alte U.K. LTD
6 Lands’ End Way
Oakham
Rutland LE15 6RF
T: +44 (0) 1572 771160
F: +44 (0) 1572 771161
E: info@meccalte.co.uk
aftersales@meccalte.co.uk

SPAIN
Mecc Alte España S.A.
C/ Río Talbilla, 2
Polig. Ind. Los Valeros
03178 Benijófar (Alicante)
T: +34 (0) 96 6702152
F: +34 (0) 96 6700103
E: info@meccalte.es
aftersales@meccalte.es

CHINA
Mecc Alte Alternator Haimen LTD
755 Nanhai East Rd
Jiangsu HEDZ 226100 PRC
T: +86 (0) 513 82325798
F: +86 (0) 513 82325768
E: info@meccalte.cn
aftersales@meccalte.cn

U.S.A. AND CANADA
Mecc Alte Inc.
1229 Adams Drive
McHenry, IL, 60051
T: +1 815 344 0530
F: +1 815 344 0535
E: info@meccalte.us
aftersales@meccalte.us

GERMANY
Mecc Alte Generatoren GmbH
Ensener Weg 21
D-51149 Köln
T: +49 (0) 2203 60541-0
F: +49 (0) 2203 60541-49
E: info@meccalte.de
aftersales@meccalte.de

INDIA
Mecc Alte India PVT LTD
Plot NO: 1, Sanaswadi
Talegaon
Dhamdhere Road Taluka:
Shirur, District:
Pune - 412208
Maharashtra, India
T: +91 2137 673200
F: +91 2137 673299
E: info@meccalte.in
aftersales@meccalte.in

FRANCE
Mecc Alte International S.A.
Z.E. la Gagnerie
16350 St. Amant de Boixe
T: +33 (0) 545 397562
F: +33 (0) 545 398820
E: info@meccalte.fr
aftersales@meccalte.fr

AUSTRALIA
Mecc Alte Alternators PTY LTD
10 Duncan Road, PO Box 1046
Dry Creek, 5094, South Australia
T: +61 (0) 8 8349 8422
F: +61 (0) 8 8349 8455
E: info@meccalte.com.au
aftersales@meccalte.com.au

FAR EAST
Mecc Alte (F.E.) PTE LTD
10V Enterprise Road, Enterprise 10
Singapore 627679
T: +65 62 657122
F: +65 62 653991
E: info@meccalte.com.sg
aftersales@meccalte.com.sg

www.meccalte.com

The world’s largest independent producer of alternators 1 – 5,000kVA